INTEGRATED CIRCUITS ## DATA SHEET For a complete data sheet, please also download: - The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications - The IC06 74HC/HCT/HCU/HCMOS Logic Package Information - The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines ## **74HC/HCT374** Octal D-type flip-flop; positive edge-trigger; 3-state Product specification File under Integrated Circuits, IC06 December 1990 ## 74HC/HCT374 #### **FEATURES** - 3-state non-inverting outputs for bus oriented applications - 8-bit positive, edge-triggered register - · Common 3-state output enable input - Independent register and 3-state buffer operation - Output capability: bus driver - I_{CC} category: MSI #### **GENERAL DESCRIPTION** The 74HC/HCT374 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT374 are octal D-type flip-flops featuring separate D-type inputs for each flip-flop and 3-state outputs for bus oriented applications. A clock (CP) and an output enable (\overline{OE}) input are common to all flip-flops. The 8 flip-flops will store the state of their individual D-inputs that meet the set-up and hold times requirements on the LOW-to-HIGH CP transition. When \overline{OE} is LOW, the contents of the 8 flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the flip-flops. The "374" is functionally identical to the "534", but has non-inverting outputs. #### QUICK REFERENCE DATA GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$ | CVMDOL | PARAMETER | CONDITIONS | TYP | LINUT | | |-------------------------------------|---|---|-----|-------|------| | SYMBOL | PARAMETER | CONDITIONS | нс | нст | UNIT | | t _{PHL} / t _{PLH} | propagation delay CP to Q _n | C _L = 15 pF; V _{CC} = 5 V | 15 | 13 | ns | | f _{max} | maximum clock frequency | | 77 | 48 | MHz | | C _I | input capacitance | | 3.5 | 3.5 | pF | | C _{PD} | power dissipation capacitance per flip-flop | notes 1 and 2 | 17 | 17 | pF | ### Notes - 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): - $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz f_o = output frequency in MHz $\sum (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$ C_L = output load capacitance in pF V_{CC} = supply voltage in V 2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V ## ORDERING INFORMATION See "74HC/HCT/HCU/HCMOS Logic Package Information". ## 74HC/HCT374 ### **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | |----------------------------|----------------------------------|---| | 1 | ŌĒ | 3-state output enable input (active LOW) | | 2, 5, 6, 9, 12, 15, 16, 19 | Q ₀ to Q ₇ | 3-state flip-flop outputs | | 3, 4, 7, 8, 13, 14, 17, 18 | D ₀ to D ₇ | data inputs | | 10 | GND | ground (0 V) | | 11 | CP | clock input (LOW-to-HIGH, edge-triggered) | | 20 | V _{CC} | positive supply voltage | ## 74HC/HCT374 ### **FUNCTION TABLE** | OPERATING | II | NPUT | S | INTERNAL | OUTPUTS | | | |-----------------------------------|----|------|----------------|------------|----------------------------------|--|--| | MODES | ΟE | СР | D _n | FLIP-FLOPS | Q ₀ to Q ₇ | | | | load and read register | L | ↑ | l | L | L | | | | | L | ↑ | h | H | H | | | | load register and disable outputs | H | ↑ | l | L | Z | | | | | H | ↑ | h | H | Z | | | #### **Notes** - 1. H = HIGH voltage level - h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition - L = LOW voltage level - I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition - Z = high impedance OFF-state - ↑ = LOW-to-HIGH CP transition Philips Semiconductors Product specification ## Octal D-type flip-flop; positive edge-trigger; 3-state 74HC/HCT374 ### DC CHARACTERISTICS FOR 74HC For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: bus driver I_{CC} category: MSI ### **AC CHARACTERISTICS FOR 74HC** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | | | | | - | Γ _{amb} (° | C) | | | | TEST CONDITIONS | | | |-------------------------------------|--|-----------------|----------------|-----------------|---------------------|-----------------|-----------------|-----------------|------|-------------------|-----------|--| | CVMDOL | PARAMETER | 74HC | | | | | | | | | | | | SYMBOL | | +25 | | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC} | WAVEFORMS | | | | | min. | typ. | max. | min. | max. | min. | max. | | (*) | | | | t _{PHL} / t _{PLH} | propagation delay
CP to Q _n | | 50
18
14 | 165
33
28 | | 205
41
35 | | 250
50
43 | ns | 2.0
4.5
6.0 | Fig.6 | | | t _{PZH} / t _{PZL} | 3-state output enable time
OE to Q _n | | 41
15
12 | 150
30
26 | | 190
38
33 | | 225
45
38 | ns | 2.0
4.5
6.0 | Fig.7 | | | t _{PHZ} / t _{PLZ} | 3-state output disable time
OE to Q _n | | 50
18
14 | 150
30
26 | | 190
38
33 | | 225
45
38 | ns | 2.0
4.5
6.0 | Fig.7 | | | t _{THL} / t _{TLH} | output transition time | | 14
5
4 | 60
12
10 | | 75
15
13 | | 90
18
15 | ns | 2.0
4.5
6.0 | Fig.6 | | | t _W | clock pulse width
HIGH or LOW | 80
16
14 | 19
7
6 | | 100
20
17 | | 120
24
20 | | ns | 2.0
4.5
6.0 | Fig.6 | | | t _{su} | set-up time
D _n to CP | 60
12
10 | 14
5
4 | | 75
15
13 | | 90
18
15 | | ns | 2.0
4.5
6.0 | Fig.8 | | | t _h | hold time
D _n to CP | 5
5
5 | -6
-2
-2 | | 5
5
5 | | 5
5
5 | | ns | 2.0
4.5
6.0 | Fig.8 | | | f _{max} | maximum clock pulse frequency | 6.0
30
35 | 23
70
83 | | 4.8
24
28 | | 4.0
20
24 | | MHz | 2.0
4.5
6.0 | Fig.6 | | Philips Semiconductors Product specification ## Octal D-type flip-flop; positive edge-trigger; 3-state 74HC/HCT374 ### DC CHARACTERISTICS FOR 74HCT For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: bus driver I_{CC} category: MSI ### Note to HCT types The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD COEFFICIENT | |----------------|-----------------------| | ŌĒ | 1.25 | | CP | 0.90 | | D _n | 0.35 | ### **AC CHARACTERISTICS FOR 74HCT** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | | | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | |-------------------------------------|--|-----------------------|------|------|------------|------|-------------|------|------|------------------------|-----------| | SYMBOL | DADAMETED | 74HCT | | | | | | | | | WAVEFORMS | | STWIBOL | PARAMETER | +25 | | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC}
(V) | WAVEFORMS | | | | min. | typ. | max. | min. | max. | min. | max. | | (-, | | | t _{PHL} / t _{PLH} | propagation delay
CP to Q _n | | 16 | 32 | | 40 | | 48 | ns | 4.5 | Fig.6 | | t _{PZH} / t _{PZL} | 3-state output enable time
OE to Q _n | | 16 | 30 | | 38 | | 45 | ns | 4.5 | Fig.7 | | t _{PHZ} / t _{PLZ} | 3-state output disable time
OE to Q _n | | 18 | 28 | | 35 | | 42 | ns | 4.5 | Fig.7 | | t _{THL} / t _{TLH} | output transition time | | 5 | 12 | | 15 | | 18 | ns | 4.5 | Fig.6 | | t _W | clock pulse width
HIGH or LOW | 19 | 11 | | 24 | | 29 | | ns | 4.5 | Fig.6 | | t _{su} | set-up time
D _n to CP | 12 | 7 | | 15 | | 18 | | ns | 4.5 | Fig.8 | | t _h | hold time
D _n to CP | 5 | -3 | | 5 | | 5 | | ns | 4.5 | Fig.8 | | f _{max} | maximum clock pulse frequency | 26 | 44 | | 21 | | 17 | | MHz | 4.5 | Fig.6 | 74HC/HCT374 #### **AC WAVEFORMS** Fig.6 Waveforms showing the clock (CP) to output (Q_n) propagation delays, the clock pulse width, output transition times and the maximum clock pulse frequency. Philips Semiconductors Product specification | Octal D-type flip-flop; positive edge-trigger; | |--| | 3-state | 74HC/HCT374 ## **PACKAGE OUTLINES** See "74HC/HCT/HCU/HCMOS Logic Package Outlines".