# 74AVC1T45-Q100 Dual-supply voltage level translator/transceiver; 3-state Rev. 5 — 25 March 2019 Product data sheet ## 1. General description The 74AVC1T45-Q100 is a single bit, dual supply transceiver with 3-state output that enables bidirectional level translation. It features two 1-bit input-output ports (A and B), a direction control input (DIR) and dual supply pins ( $V_{CC(A)}$ and $V_{CC(B)}$ ). Both $V_{CC(A)}$ and $V_{CC(B)}$ can be supplied at any voltage between 0.8 V and 3.6 V making the device suitable for translating between any of the low voltage nodes (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V). Pins A and DIR are referenced to $V_{CC(A)}$ and pin B is referenced to $V_{CC(B)}$ . A HIGH on DIR allows transmission from A to B and a LOW on DIR allows transmission from B to A. The device is fully specified for partial power-down applications using $I_{OFF}$ . The $I_{OFF}$ circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{CC(A)}$ or $V_{CC(B)}$ are at GND level, both A and B are in the high-impedance OFF-state. This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications. #### 2. Features and benefits - Automotive product qualification in accordance with AEC-Q100 (Grade 1) - Specified from -40 °C to +85 °C and from -40 °C to +125 °C - · Wide supply voltage range: - V<sub>CC(A)</sub>: 0.8 V to 3.6 V - V<sub>CC(B)</sub>: 0.8 V to 3.6 V - High noise immunity - Complies with JEDEC standards: - JESD8-12 (0.8 V to 1.3 V) - JESD8-11 (0.9 V to 1.65 V) - JESD8-7 (1.2 V to 1.95 V) - JESD8-5 (1.8 V to 2.7 V) - JESD8-B (2.7 V to 3.6 V) - ESD protection: - MIL-STD-883, method 3015 Class 3B exceeds 8000 V - HBM JESD22-A114E Class 3B exceeds 8000 V - MM JESD22-A115-A exceeds 200 V (C = 200 pF; R = 0 Ω) - Maximum data rates: - 500 Mbit/s (1.8 V to 3.3 V translation) - 320 Mbit/s (< 1.8 V to 3.3 V translation)</li> - 320 Mbit/s (translate to 2.5 V or 1.8 V) - 280 Mbit/s (translate to 1.5 V) - 240 Mbit/s (translate to 1.2 V) - Suspend mode - Latch-up performance exceeds 100 mA per JESD 78 Class II - Inputs accept voltages up to 3.6 V - Low noise overshoot and undershoot < 10 % of V<sub>CC</sub> - I<sub>OFF</sub> circuitry provides partial Power-down mode operation - · Multiple package options ## 3. Ordering information **Table 1. Ordering information** | Type number | Package | | | | | | | | |------------------|-------------------|-------|---------------------------------------------------------------------------------------------|---------|--|--|--|--| | | Temperature range | Name | Description | Version | | | | | | 74AVC1T45GW-Q100 | -40 °C to +125 °C | SC-88 | plastic surface-mounted package; 6 leads | SOT363 | | | | | | 74AVC1T45GM-Q100 | -40 °C to +125 °C | XSON6 | plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm | SOT886 | | | | | | 74AVC1T45GS-Q100 | -40 °C to +125 °C | XSON6 | extremely thin small outline package; no leads; 6 terminals; body 1.0 x 1.0 x 0.35 mm | SOT1202 | | | | | ## 4. Marking ### Table 2. Marking | Type number | Marking code[1] | | | | |------------------|-----------------|--|--|--| | 74AVC1T45GW-Q100 | B5 | | | | | 74AVC1T45GM-Q100 | B5 | | | | | 74AVC1T45GS-Q100 | B5 | | | | [1] The pin 1 indicator is located on the lower left corner of the device, below the marking code. ## 5. Functional diagram ## 6. Pinning information ### 6.1. Pinning ### 6.2. Pin description #### Table 3. Pin description | Symbol | Pin | Description | |--------------------|-----|-------------------------------| | V <sub>CC(A)</sub> | 1 | supply voltage port A and DIR | | GND | 2 | ground (0 V) | | A | 3 | data input or output | | В | 4 | data input or output | | DIR | 5 | direction control | | $V_{CC(B)}$ | 6 | supply voltage port B | ## 7. Functional description #### **Table 4. Function table** H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state. | Supply voltage | Input | Input/output[1] | | | | |-----------------------------------------|--------|-----------------|-------|--|--| | V <sub>CC(A)</sub> , V <sub>CC(B)</sub> | DIR[2] | A | В | | | | 0.8 V to 3.6 V | L | A = B | input | | | | 0.8 V to 3.6 V | Н | input | B = A | | | | GND[3] | X | Z | Z | | | - The input circuit of the data I/O is always active. - [2] - The DIR input circuit is referenced to $V_{CC(A)}$ . When either $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into suspend mode. ## 8. Limiting values #### **Table 5. Limiting values** In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | Min | Max | Unit | |--------------------|-------------------------|------------------------------------------|-----------|------|------------------------|------| | V <sub>CC(A)</sub> | supply voltage A | | | -0.5 | +4.6 | V | | V <sub>CC(B)</sub> | supply voltage B | | | -0.5 | +4.6 | V | | I <sub>IK</sub> | input clamping current | V <sub>I</sub> < 0 V | | -50 | - | mA | | VI | input voltage | | [1] | -0.5 | +4.6 | V | | I <sub>OK</sub> | output clamping current | V <sub>O</sub> < 0 V | | -50 | - | mA | | V <sub>O</sub> | output voltage | Active mode | [1][2][3] | -0.5 | V <sub>CCO</sub> + 0.5 | V | | | | Suspend or 3-state mode | [1] | -0.5 | +4.6 | V | | Io | output current | $V_O = 0 V \text{ to } V_{CCO}$ | | - | ±50 | mA | | I <sub>CC</sub> | supply current | I <sub>CC(A)</sub> or I <sub>CC(B)</sub> | | - | 100 | mA | | I <sub>GND</sub> | ground current | | | -100 | - | mA | | T <sub>stg</sub> | storage temperature | | | -65 | +150 | °C | | P <sub>tot</sub> | total power dissipation | $T_{amb}$ = -40 °C to +125 °C | [4][5] | - | 250 | mW | <sup>[1]</sup> The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed. ## 9. Recommended operating conditions Table 6. Recommended operating conditions | Symbol | Parameter | Conditions | | Min | Max | Unit | |--------------------|-------------------------------------|-----------------------------------|-----|-----|------------------|------| | V <sub>CC(A)</sub> | supply voltage A | | | 8.0 | 3.6 | V | | V <sub>CC(B)</sub> | supply voltage B | | | 0.8 | 3.6 | V | | VI | input voltage | | | 0 | 3.6 | V | | Vo | output voltage | Active mode | [1] | 0 | V <sub>cco</sub> | V | | | | Suspend or 3-state mode | | 0 | 3.6 | V | | T <sub>amb</sub> | ambient temperature | | | -40 | +125 | °C | | Δt/ΔV | input transition rise and fall rate | V <sub>CCI</sub> = 0.8 V to 3.6 V | [2] | - | 5 | ns/V | <sup>[1]</sup> $V_{CCO}$ is the supply voltage associated with the output port. <sup>[2]</sup> V<sub>CCO</sub> is the supply voltage associated with the output port. <sup>[3]</sup> $V_{CCO}$ + 0.5 V should not exceed 4.6 V. <sup>[4]</sup> For SC-88 package: above 87.5 °C the value of P<sub>tot</sub> derates linearly with 4.0 mW/K. <sup>[5]</sup> For XSON6 packages: above 118 °C the value of Ptot derates linearly with 7.8 mW/K. <sup>[2]</sup> V<sub>CCI</sub> is the supply voltage associated with the input port. ## 10. Static characteristics #### **Table 7. Typical static characteristics** At recommended operating conditions; voltages are referenced to GND (ground = 0 V).[1] | Symbol | Parameter | Conditions | | Т | Unit | | | |------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|-----|-----|--------|-------|----| | | | | | Min | Тур | Max | | | V <sub>OH</sub> | HIGH-level output voltage | $V_I = V_{IH}$ or $V_{IL}$ | | | | | | | | | $I_{O}$ = -1.5 mA; $V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$ | | - | 0.69 | - | V | | V <sub>OL</sub> | LOW-level output voltage | $V_I = V_{IH}$ or $V_{IL}$ | | | | | | | | | $I_O = 1.5 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$ | | - | 0.07 | - | V | | Iı | input leakage current | DIR input; $V_1 = 0 \text{ V or } 3.6 \text{ V};$<br>$V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$ | | - | ±0.025 | ±0.25 | μΑ | | I <sub>OZ</sub> | OFF-state output current | A or B port; $V_O = 0 \text{ V or } V_{CCO}$ ; $V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$ | [2] | - | ±0.5 | ±2.5 | μΑ | | I <sub>OFF</sub> | power-off leakage current | A port; $V_1$ or $V_0$ = 0 V to 3.6 V; $V_{CC(A)}$ = 0 V; $V_{CC(B)}$ = 0.8 V to 3.6 V | | - | ±0.1 | ±1 | μΑ | | | | B port; $V_1$ or $V_0$ = 0 V to 3.6 V; $V_{CC(B)}$ = 0 V; $V_{CC(A)}$ = 0.8 V to 3.6 V | | - | ±0.1 | ±1 | μΑ | | Cı | input capacitance | DIR input; $V_1 = 0 \text{ V or } 3.3 \text{ V};$<br>$V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$ | | - | 1.0 | - | pF | | C <sub>I/O</sub> | input/output capacitance | A and B port; Suspend mode;<br>$V_O = V_{CCO}$ or GND; $V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$ | | - | 4.0 | - | pF | <sup>[1]</sup> $V_{CCO}$ is the supply voltage associated with the output port. <sup>[2]</sup> For I/O ports, the parameter I<sub>OZ</sub> includes the input leakage current. **Table 8. Static characteristics** At recommended operating conditions; voltages are referenced to GND (ground = 0 V).[1][2] | Symbol | Parameter | Conditions | -40 °C to | o +85 °C | -40 °C to | +125 °C | Unit | |----------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------------------------------------------------------------------|------| | | | | Min | Max | Min | Max | | | V <sub>IH</sub> | HIGH-level | data input | | | | | | | | input voltage | V <sub>CCI</sub> = 0.8 V | 0.70V <sub>CCI</sub> | - | 0.70V <sub>CCI</sub> | - | V | | | | V <sub>CCI</sub> = 1.1 V to 1.95 V | 0.65V <sub>CCI</sub> | - | 0.65V <sub>CCI</sub> | - | V | | | | V <sub>CCI</sub> = 2.3 V to 2.7 V | 1.6 | - | 1.6 | - | V | | | | V <sub>CCI</sub> = 3.0 V to 3.6 V | 2 | - | 2 | Max<br>- | V | | | | DIR input | | | | | | | | | V <sub>CC(A)</sub> = 0.8 V | 0.70V <sub>CC(A)</sub> | - | 0.70V <sub>CC(A)</sub> | - | V | | | | V <sub>CC(A)</sub> = 1.1 V to 1.95 V | 0.65V <sub>CC(A)</sub> | - | 0.65V <sub>CC(A)</sub> | - | V | | | | V <sub>CC(A)</sub> = 2.3 V to 2.7 V | 1.6 | - | 1.6 | - | V | | | | V <sub>CC(A)</sub> = 3.0 V to 3.6 V | 2 | - | 2 | - | V | | V <sub>IL</sub> | LOW-level | data input | | | | | | | input voltage $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - | 0.30V <sub>CCI</sub> | V | | | | | | | | V <sub>CCI</sub> = 1.1 V to 1.95 V | - | 0.35V <sub>CCI</sub> | - | 0.35V <sub>CCI</sub> | V | | | | V <sub>CCI</sub> = 2.3 V to 2.7 V | - | 0.7 | - | 0.7 | V | | | | V <sub>CCI</sub> = 3.0 V to 3.6 V | - | 0.9 | - | 0.9 | V | | | | | | | | | | | | | V <sub>CC(A)</sub> = 0.8 V | - | 0.30V <sub>CC(A)</sub> | - | 0.30V <sub>CC(A)</sub> | V | | | | V <sub>CC(A)</sub> = 1.1 V to 1.95 V | - | | - | | V | | | | V <sub>CC(A)</sub> = 2.3 V to 2.7 V | - | | - | | V | | | | V <sub>CC(A)</sub> = 3.0 V to 3.6 V | - | 0.9 | - | 0.9 | V | | • | HIGH-level | $V_I = V_{IH}$ or $V_{IL}$ | | | | | | | | output voltage | $I_{O}$ = -100 µA;<br>$V_{CC(A)}$ = $V_{CC(B)}$ = 0.8 V to 3.6 V | V <sub>CCO</sub> - 0.1 | - | V <sub>CCO</sub> - 0.1 | - | V | | | | $I_{O}$ = -3 mA;<br>$V_{CC(A)}$ = $V_{CC(B)}$ = 1.1 V | 0.85 | - | 0.85 | - | V | | | | $I_{O}$ = -6 mA;<br>$V_{CC(A)}$ = $V_{CC(B)}$ = 1.4 V | 1.05 | - | 1.05 | - | V | | | | $I_{O}$ = -8 mA;<br>$V_{CC(A)}$ = $V_{CC(B)}$ = 1.65 V | 1.2 | - | 1.2 | - | V | | | | $I_O = -9 \text{ mA};$<br>$V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$ | 1.75 | - | 1.75 | - | V | | | | $I_O = -12 \text{ mA};$<br>$V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$ | 2.3 | - | 2.3 | - | V | | V <sub>OL</sub> | LOW-level | V <sub>I</sub> = V <sub>IH</sub> or V <sub>IL</sub> | | | | | | | | output voltage | $I_O = 100 \mu A;$<br>$V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$ | - | 0.1 | - | 0.1 | V | | | | $I_{O}$ = 3 mA; $V_{CC(A)} = V_{CC(B)} = 1.1 V$ | - | 0.25 | - | 0.25 | V | | | | I <sub>O</sub> = 6 mA; V <sub>CC(A)</sub> = V <sub>CC(B)</sub> = 1.4 V | - | 0.35 | - | 0.35 | V | | | | $I_{O}$ = 8 mA;<br>$V_{CC(A)}$ = $V_{CC(B)}$ = 1.65 V | - | 0.45 | - | 0.45 | V | | | | I <sub>O</sub> = 9 mA; V <sub>CC(A)</sub> = V <sub>CC(B)</sub> = 2.3 V | - | 0.55 | - | 0.55 | V | | | | I <sub>O</sub> = 12 mA;<br>V <sub>CC(A)</sub> = V <sub>CC(B</sub> = 3.0 V | - | 0.7 | - | 0.7 0.9 0.30V <sub>CC(A)</sub> 0.35V <sub>CC(A)</sub> 0.7 0.9 0.1 0.25 0.35 0.45 | V | | Symbol | Parameter | Conditions | -40 °C | to +85 °C | -40 °C to | o +125 °C | Unit | |-----------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-----------|-----------|------| | | | | Min | Max | Min | Max | | | lı | input leakage<br>current | DIR input; $V_1 = 0 \text{ V or } 3.6 \text{ V};$<br>$V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$ | - | ±1 | - | ±1.5 | μA | | l <sub>OZ</sub> | OFF-state output current | A or B port; $V_O = 0 \text{ V or } V_{CCO}$ ; [3<br>$V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$ | - | ±5 | - | ±7.5 | μA | | J. I | power-off<br>leakage | A port; $V_1$ or $V_0 = 0$ V to 3.6 V;<br>$V_{CC(A)} = 0$ V; $V_{CC(B)} = 0.8$ V to 3.6 V | - | ±5 | - | ±35 | μA | | | current | B port; $V_1$ or $V_0$ = 0 V to 3.6 V;<br>$V_{CC(B)}$ = 0 V; $V_{CC(A)}$ = 0.8 V to 3.6 V | - | ±5 | - | ±35 | μA | | I <sub>CC</sub> | supply current | A port; $V_I = 0 \text{ V or } V_{CCI}$ ; $I_O = 0 \text{ A}$ | | | | | | | | | V <sub>CC(A)</sub> = 0.8 V to 3.6 V;<br>V <sub>CC(B)</sub> = 0.8 V to 3.6 V | - | 8 | - | 12 | μA | | | | V <sub>CC(A)</sub> = 3.6 V; V <sub>CC(B)</sub> = 0 V | - | 8 | - | 12 | μΑ | | | | V <sub>CC(A)</sub> = 0 V; V <sub>CC(B)</sub> = 3.6 V | -2 | - | -8 | - | μΑ | | | | B port; V <sub>I</sub> = 0 V or V <sub>CCI</sub> ; I <sub>O</sub> = 0 A | | | | | | | | | V <sub>CC(A)</sub> = 0.8 V to 3.6 V;<br>V <sub>CC(B)</sub> = 0.8 V to 3.6 V | - | 8 | - | 12 | μA | | | | V <sub>CC(A)</sub> = 3.6 V; V <sub>CC(B)</sub> = 0 V | -2 | - | -8 | - | μΑ | | | | V <sub>CC(A)</sub> = 0 V; V <sub>CC(B)</sub> = 3.6 V | - | 8 | - | 12 | μΑ | | | | A plus B port ( $I_{CC(A)} + I_{CC(B)}$ );<br>$I_O = 0$ A; $V_I = 0$ V or $V_{CCI}$ ;<br>$V_{CC(A)} = 0.8$ V to 3.6 V;<br>$V_{CC(B)} = 0.8$ V to 3.6 V | - | 16 | - | 24 | μА | <sup>[2]</sup> $V_{CCO}$ is the supply voltage associated with the output port. $V_{CCI}$ is the supply voltage associated with the data input port. For I/O ports, the parameter $I_{OZ}$ includes the input leakage current. [3] ## 11. Dynamic characteristics #### Table 9. Typical dynamic characteristics Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 7; for wave forms see Fig. 5 and Fig. 6[1] | Symbol | Parameter | Conditions | V <sub>CC(B)</sub> | | | | | | Unit | |---------------------------------------------------------|-------------------|------------|--------------------|-------|-------|-------|-------|-------|------| | | | | 0.8 V | 1.2 V | 1.5 V | 1.8 V | 2.5 V | 3.3 V | | | V <sub>CC(A)</sub> = 0.8 V and T <sub>amb</sub> = 25 °C | | | | | | | | | | | t <sub>pd</sub> | propagation delay | A to B | 15.5 | 8.1 | 7.6 | 7.7 | 8.4 | 9.2 | ns | | | | B to A | 15.5 | 12.7 | 12.3 | 12.2 | 12.0 | 11.8 | ns | | t <sub>dis</sub> | disable time | DIR to A | 12.2 | 12.2 | 12.2 | 12.2 | 12.2 | 12.2 | ns | | | | DIR to B | 11.7 | 7.9 | 7.6 | 8.2 | 8.7 | 10.2 | ns | | t <sub>en</sub> | enable time | DIR to A | 27.2 | 20.6 | 19.9 | 20.4 | 20.7 | 22.0 | ns | | | | DIR to B | 27.7 | 20.3 | 19.8 | 19.9 | 20.6 | 21.4 | ns | <sup>[1]</sup> $t_{pd}$ is the same as $t_{PLH}$ and $t_{PHL}$ ; $t_{dis}$ is the same as $t_{PLZ}$ and $t_{PHZ}$ ; $t_{en}$ is the same as $t_{PZL}$ and $t_{PZH}$ . $t_{en}$ is a calculated value using the formula shown in <u>Section 12.4</u> #### Table 10. Typical dynamic characteristics Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 7; for wave forms see Fig. 5 and Fig. 6[1] | Symbol | Parameter | Conditions | V <sub>CC(A)</sub> | | | | | | Unit | |---------------------------------------------------------|-------------------|------------|--------------------|-------|-------|-------|-------|-------|------| | | | | 0.8 V | 1.2 V | 1.5 V | 1.8 V | 2.5 V | 3.3 V | | | V <sub>CC(B)</sub> = 0.8 V and T <sub>amb</sub> = 25 °C | | | | | | | | | | | t <sub>pd</sub> p | propagation delay | A to B | 15.5 | 12.7 | 12.3 | 12.2 | 12.0 | 11.8 | ns | | | | B to A | 15.5 | 8.1 | 7.6 | 7.7 | 8.4 | 9.2 | ns | | t <sub>dis</sub> | disable time | DIR to A | 12.2 | 4.9 | 3.8 | 3.7 | 2.8 | 3.4 | ns | | | | DIR to B | 11.7 | 9.2 | 9.0 | 8.8 | 8.7 | 8.6 | ns | | t <sub>en</sub> | enable time | DIR to A | 27.2 | 17.3 | 16.6 | 16.5 | 17.1 | 17.8 | ns | | | | DIR to B | 27.7 | 17.6 | 16.1 | 15.9 | 14.8 | 15.2 | ns | <sup>[1]</sup> $t_{pd}$ is the same as $t_{PLH}$ and $t_{PHL}$ ; $t_{dis}$ is the same as $t_{PLZ}$ and $t_{PHZ}$ ; $t_{en}$ is the same as $t_{PZL}$ and $t_{PZH}$ . $t_{en}$ is a calculated value using the formula shown in <u>Section 12.4</u> #### Table 11. Typical power dissipation capacitance Voltages are referenced to GND (ground = 0 V).[1][2] | Symbol | Parameter | Conditions | $V_{CC(A)} = V_{CC(B)}$ | | | | | | | |--------------------------|-------------------------------|-----------------------------------------------------------|-------------------------|-------|-------|-------|-------|-------|----| | | | | 0.8 V | 1.2 V | 1.5 V | 1.8 V | 2.5 V | 3.3 V | | | T <sub>amb</sub> = 25 °C | | | | | | | | | | | C <sub>PD</sub> | power dissipation capacitance | A port: (direction A to B);<br>B port: (direction B to A) | 1 | 2 | 2 | 2 | 2 | 2 | pF | | | | A port: (direction B to A);<br>B port: (direction A to B) | 9 | 11 | 11 | 12 | 14 | 17 | pF | [1] $C_{PD}$ is used to determine the dynamic power dissipation ( $P_D$ in $\mu W$ ). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: $f_i$ = input frequency in MHz; $f_0$ = output frequency in MHz; C<sub>L</sub> = load capacitance in pF; V<sub>CC</sub> = supply voltage in V; N = number of inputs switching; $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs. [2] $f_i = 10$ MHz; $V_I = GND$ to $V_{CC}$ ; $t_r = t_f = 1$ ns; $C_L = 0$ pF; $R_L = \infty \Omega$ . **Table 12. Dynamic characteristics** Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 7; for wave forms see Fig. 5 and Fig. 6[1] | Symbol | Parameter | neter Conditions | V <sub>CC(B)</sub> | | | | | | | | | Unit | | |----------------------|----------------------|-----------------------------|--------------------|------|-------------|------|--------------|------|---------------|------|-------------|------|----| | | | | 1.2 V±0.1 V | | 1.5 V±0.1 V | | 1.8 V±0.15 V | | V 2.5 V±0.2 V | | 3.3 V±0.3 V | | | | | | | Min | Max | | | V <sub>CC(A)</sub> = | 1.1 V to 1.3 V; | T <sub>amb</sub> = -40 °C | to +85 ° | C | | | | | | | | | | | t <sub>pd</sub> | propagation | A to B | 1.0 | 9.0 | 0.7 | 6.8 | 0.6 | 6.1 | 0.5 | 5.7 | 0.5 | 6.1 | ns | | | delay | B to A | 1.0 | 9.0 | 0.8 | 8.0 | 0.7 | 7.7 | 0.6 | 7.2 | 0.5 | 7.1 | ns | | t <sub>dis</sub> | disable time | DIR to A | 2.2 | 8.8 | 2.2 | 8.8 | 2.2 | 8.8 | 2.2 | 8.8 | 2.2 | 8.8 | ns | | | | DIR to B | 2.2 | 8.4 | 1.8 | 6.7 | 2.0 | 6.9 | 1.7 | 6.2 | 2.4 | 7.2 | ns | | t <sub>en</sub> | enable time | DIR to A | - | 17.4 | - | 14.7 | - | 14.6 | - | 13.4 | - | 14.3 | ns | | | | DIR to B | - | 17.8 | - | 15.6 | - | 14.9 | - | 14.5 | - | 14.9 | ns | | V <sub>CC(A)</sub> = | 1.4 V to 1.6 V; | T <sub>amb</sub> = -40 °C | to +85 ° | ,C | | | | | | | | | | | t <sub>pd</sub> | propagation | A to B | 1.0 | 8.0 | 0.7 | 5.4 | 0.6 | 4.6 | 0.5 | 3.7 | 0.5 | 3.5 | ns | | | delay | B to A | 1.0 | 6.8 | 0.8 | 5.4 | 0.7 | 5.1 | 0.6 | 4.7 | 0.5 | 4.5 | ns | | t <sub>dis</sub> | disable time | DIR to A | 1.6 | 6.3 | 1.6 | 6.3 | 1.6 | 6.3 | 1.6 | 6.3 | 1.6 | 6.3 | ns | | | | DIR to B | 2.0 | 7.6 | 1.8 | 5.9 | 1.6 | 6.0 | 1.2 | 4.8 | 1.7 | 5.5 | ns | | t <sub>en</sub> | enable time | DIR to A | - | 14.4 | - | 11.3 | - | 11.1 | - | 9.5 | - | 10.0 | ns | | | | DIR to B | - | 14.3 | - | 11.7 | - | 10.9 | - | 10.0 | - | 9.8 | ns | | V <sub>CC(A)</sub> = | 1.65 V to 1.95 | V; T <sub>amb</sub> = -40 ° | C to +8 | 5 °C | | ' | ' | ' | ' | ' | ' | ' | • | | t <sub>pd</sub> | propagation<br>delay | A to B | 1.0 | 7.7 | 0.6 | 5.1 | 0.5 | 4.3 | 0.5 | 3.4 | 0.5 | 3.1 | ns | | | | B to A | 1.0 | 6.1 | 0.7 | 4.6 | 0.5 | 4.4 | 0.5 | 3.9 | 0.5 | 3.7 | ns | | t <sub>dis</sub> | disable time | DIR to A | 1.6 | 5.5 | 1.6 | 5.5 | 1.6 | 5.5 | 1.6 | 5.5 | 1.6 | 5.5 | ns | | | | DIR to B | 1.8 | 7.7 | 1.8 | 5.7 | 1.4 | 5.8 | 1.0 | 4.5 | 1.5 | 5.2 | ns | | t <sub>en</sub> | enable time | DIR to A | - | 13.8 | - | 10.3 | - | 10.2 | - | 8.4 | - | 8.9 | ns | | | | DIR to B | - | 13.2 | - | 10.6 | - | 9.8 | - | 8.9 | - | 8.6 | ns | | V <sub>CC(A)</sub> = | 2.3 V to 2.7 V; | T <sub>amb</sub> = -40 °C | to +85 ° | C | | | | ' | | | | | | | t <sub>pd</sub> | propagation | A to B | 1.0 | 7.2 | 0.5 | 4.7 | 0.5 | 3.9 | 0.5 | 3.0 | 0.5 | 2.6 | ns | | | delay | B to A | 1.0 | 5.7 | 0.6 | 3.8 | 0.5 | 3.4 | 0.5 | 3.0 | 0.5 | 2.8 | ns | | t <sub>dis</sub> | disable time | DIR to A | 1.5 | 4.2 | 1.5 | 4.2 | 1.5 | 4.2 | 1.5 | 4.2 | 1.5 | 4.2 | ns | | | | DIR to B | 1.7 | 7.3 | 2.0 | 5.2 | 1.5 | 5.1 | 0.6 | 4.2 | 1.1 | 4.8 | ns | | t <sub>en</sub> | enable time | DIR to A | - | 13.0 | - | 9.0 | - | 8.5 | - | 7.2 | - | 7.6 | ns | | | | DIR to B | - | 11.4 | - | 8.9 | - | 8.1 | - | 7.2 | - | 6.8 | ns | | V <sub>CC(A)</sub> = | 3.0 V to 3.6 V; | T <sub>amb</sub> = -40 °C | to +85 ° | C | ' | ' | | ' | | · | | | | | t <sub>pd</sub> | propagation | A to B | 1.0 | 7.1 | 0.5 | 4.5 | 0.5 | 3.7 | 0.5 | 2.8 | 0.5 | 2.4 | ns | | | delay | B to A | 1.0 | 6.1 | 0.6 | 3.6 | 0.5 | 3.1 | 0.5 | 2.6 | 0.5 | 2.4 | ns | | t <sub>dis</sub> | disable time | DIR to A | 1.5 | 4.7 | 1.5 | 4.7 | 1.5 | 4.7 | 1.5 | 4.7 | 1.5 | 4.7 | ns | | | | DIR to B | 1.7 | 7.2 | 0.7 | 5.5 | 0.6 | 5.5 | 0.7 | 4.1 | 1.7 | 4.7 | ns | | t <sub>en</sub> | enable time | DIR to A | - | 13.3 | - | 9.1 | - | 8.6 | - | 6.7 | - | 7.1 | ns | | | | DIR to B | - | 11.8 | - | 9.2 | - | 8.4 | - | 7.5 | - | 7.1 | ns | <sup>[1]</sup> $t_{pd}$ is the same as $t_{PLH}$ and $t_{PHL}$ ; $t_{dis}$ is the same as $t_{PLZ}$ and $t_{PHZ}$ ; $t_{en}$ is the same as $t_{PZL}$ and $t_{PZH}$ . $t_{en}$ is a calculated value using the formula shown in <u>Section 12.4</u> **Table 13. Dynamic characteristics** Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 7; for wave forms see Fig. 5 and Fig. 6[1] | Symbol | Parameter | rameter Conditions | | | | | Vc | C(B) | | | | | Unit | |----------------------|----------------------|-----------------------------|---------|--------|-------|--------|-----|---------|-------|-------------|-----|-------------|------| | | | | 1.2 V | ±0.1 V | 1.5 V | ±0.1 V | | :0.15 V | 2.5 V | V±0.2 V 3.3 | | 3.3 V±0.3 V | | | | | | Min | Max | - | | V <sub>CC(A)</sub> = | 1.1 V to 1.3 V; | T <sub>amb</sub> = -40 °C | to +125 | °C | l | | | | l | - | l | | - | | t <sub>pd</sub> | propagation | A to B | 1.0 | 9.9 | 0.7 | 7.5 | 0.6 | 6.8 | 0.5 | 6.3 | 0.5 | 6.8 | ns | | | delay | B to A | 1.0 | 9.9 | 0.8 | 8.8 | 0.7 | 8.5 | 0.6 | 8.0 | 0.5 | 7.9 | ns | | t <sub>dis</sub> | disable time | DIR to A | 2.2 | 9.7 | 2.2 | 9.7 | 2.2 | 9.7 | 2.2 | 9.7 | 2.2 | 9.7 | ns | | | | DIR to B | 2.2 | 9.2 | 1.8 | 7.4 | 2.0 | 7.6 | 1.7 | 6.9 | 2.4 | 8.0 | ns | | t <sub>en</sub> | enable time | DIR to A | - | 19.1 | - | 16.2 | - | 16.1 | - | 14.9 | - | 15.9 | ns | | | | DIR to B | - | 19.6 | - | 17.2 | - | 16.5 | - | 16.0 | - | 16.5 | ns | | V <sub>CC(A)</sub> = | 1.4 V to 1.6 V; | T <sub>amb</sub> = -40 °C | to +125 | °C | | | | ı | | | 1 | | | | t <sub>pd</sub> | propagation | A to B | 1.0 | 8.8 | 0.7 | 6.0 | 0.6 | 5.1 | 0.5 | 4.1 | 0.5 | 3.9 | ns | | | delay | B to A | 1.0 | 7.5 | 0.8 | 6.0 | 0.7 | 5.7 | 0.6 | 5.2 | 0.5 | 5.0 | ns | | t <sub>dis</sub> | disable time | DIR to A | 1.6 | 7.0 | 1.6 | 7.0 | 1.6 | 7.0 | 1.6 | 7.0 | 1.6 | 7.0 | ns | | | | DIR to B | 2.0 | 8.3 | 1.8 | 6.5 | 1.6 | 6.6 | 1.2 | 5.3 | 1.7 | 6.1 | ns | | t <sub>en</sub> | enable time | DIR to A | - | 15.8 | - | 12.5 | - | 12.3 | - | 10.5 | - | 11.1 | ns | | | | DIR to B | - | 15.8 | - | 13.0 | - | 12.1 | - | 11.1 | - | 10.9 | ns | | V <sub>CC(A)</sub> = | 1.65 V to 1.95 | V; T <sub>amb</sub> = -40 ° | C to +1 | 25 °C | ' | ' | | | | ' | ' | 1 | ' | | t <sub>pd</sub> | propagation<br>delay | A to B | 1.0 | 8.5 | 0.6 | 5.7 | 0.5 | 4.8 | 0.5 | 3.8 | 0.5 | 3.5 | ns | | | | B to A | 1.0 | 6.8 | 0.7 | 5.1 | 0.5 | 4.9 | 0.5 | 4.3 | 0.5 | 4.1 | ns | | t <sub>dis</sub> | disable time | DIR to A | 1.6 | 6.1 | 1.6 | 6.1 | 1.6 | 6.1 | 1.6 | 6.1 | 1.6 | 6.1 | ns | | | | DIR to B | 1.8 | 8.5 | 1.8 | 6.3 | 1.4 | 6.4 | 1.0 | 5.0 | 1.5 | 5.8 | ns | | t <sub>en</sub> | enable time | DIR to A | - | 15.3 | - | 11.4 | - | 11.3 | - | 9.3 | - | 9.9 | ns | | | | DIR to B | - | 14.6 | - | 11.8 | - | 10.9 | - | 9.9 | - | 9.6 | ns | | V <sub>CC(A)</sub> = | 2.3 V to 2.7 V; | T <sub>amb</sub> = -40 °C | to +125 | °C | | | | | | | | | | | t <sub>pd</sub> | propagation | A to B | 1.0 | 8.0 | 0.5 | 5.2 | 0.5 | 4.3 | 0.5 | 3.3 | 0.5 | 2.9 | ns | | | delay | B to A | 1.0 | 6.3 | 0.6 | 4.2 | 0.5 | 3.8 | 0.5 | 3.3 | 0.5 | 3.1 | ns | | t <sub>dis</sub> | disable time | DIR to A | 1.5 | 4.7 | 1.5 | 4.7 | 1.5 | 4.7 | 1.5 | 4.7 | 1.5 | 4.7 | ns | | | | DIR to B | 1.7 | 8.0 | 2.0 | 5.8 | 1.5 | 5.7 | 0.6 | 4.7 | 1.1 | 5.3 | ns | | t <sub>en</sub> | enable time | DIR to A | - | 14.3 | - | 10.0 | - | 9.5 | - | 8.0 | - | 8.4 | ns | | | | DIR to B | - | 12.7 | - | 9.9 | - | 9.0 | - | 8.0 | - | 7.6 | ns | | V <sub>CC(A)</sub> = | 3.0 V to 3.6 V; | T <sub>amb</sub> = -40 °C | to +125 | °C | • | | | | • | | | | | | t <sub>pd</sub> | propagation | A to B | 1.0 | 7.9 | 0.5 | 5.0 | 0.5 | 4.1 | 0.5 | 3.1 | 0.5 | 2.7 | ns | | | delay | B to A | 1.0 | 6.8 | 0.6 | 4.0 | 0.5 | 3.5 | 0.5 | 2.9 | 0.5 | 2.7 | ns | | t <sub>dis</sub> | disable time | DIR to A | 1.5 | 5.2 | 1.5 | 5.2 | 1.5 | 5.2 | 1.5 | 5.2 | 1.5 | 5.2 | ns | | | | DIR to B | 1.7 | 7.9 | 0.7 | 6.1 | 0.6 | 6.1 | 0.7 | 4.6 | 1.7 | 5.2 | ns | | t <sub>en</sub> | enable time | DIR to A | - | 14.7 | - | 10.1 | - | 9.6 | - | 7.5 | - | 7.9 | ns | | | | DIR to B | - | 13.1 | - | 10.2 | - | 9.3 | - | 8.3 | - | 7.9 | ns | <sup>[1]</sup> $t_{pd}$ is the same as $t_{PLH}$ and $t_{PHL}$ ; $t_{dis}$ is the same as $t_{PLZ}$ and $t_{PHZ}$ ; $t_{en}$ is the same as $t_{PZL}$ and $t_{PZH}$ . $t_{en}$ is a calculated value using the formula shown in Section 12.4 #### 11.1. Waveforms and test circuit Fig. 5. The data input (A, B) to output (B, A) propagation delay times **Table 14. Measurement points** | Supply voltage | Input [1] | Output [2] | | | | | |------------------------|---------------------|---------------------|--------------------------|--------------------------|--|--| | $V_{CC(A)}, V_{CC(B)}$ | V <sub>M</sub> | V <sub>M</sub> | $V_X$ | V <sub>Y</sub> | | | | 1.1 V to 1.6 V | 0.5V <sub>CCI</sub> | 0.5V <sub>CCO</sub> | V <sub>OL</sub> + 0.1 V | V <sub>OH</sub> - 0.1 V | | | | 1.65 V to 2.7 V | 0.5V <sub>CCI</sub> | 0.5V <sub>CCO</sub> | V <sub>OL</sub> + 0.15 V | V <sub>OH</sub> - 0.15 V | | | | 3.0 V to 3.6 V | 0.5V <sub>CCI</sub> | 0.5V <sub>CCO</sub> | V <sub>OL</sub> + 0.3 V | V <sub>OH</sub> - 0.3 V | | | - [1] V<sub>CCI</sub> is the supply voltage associated with the data input port. - [2] $V_{CCO}$ is the supply voltage associated with the output port. Test data is given in Table 15. $R_L$ = Load resistance. C<sub>L</sub> = Load capacitance including jig and probe capacitance. $R_T$ = Termination resistance. V<sub>EXT</sub> = External voltage for measuring switching times. Fig. 7. Test circuit for measuring switching times Table 15. Test data | Supply voltage Input | | Load | | V <sub>EXT</sub> | | | | |------------------------|--------------------|------------|-------|------------------|-------------------------------------|-------------------------------------|-----------------------------------------| | $V_{CC(A)}, V_{CC(B)}$ | V <sub>I</sub> [1] | Δt/ΔV [2] | CL | R <sub>L</sub> | t <sub>PLH</sub> , t <sub>PHL</sub> | t <sub>PZH</sub> , t <sub>PHZ</sub> | t <sub>PZL</sub> , t <sub>PLZ</sub> [3] | | 1.1 V to 1.6 V | V <sub>CCI</sub> | ≤ 1.0 ns/V | 15 pF | 2 kΩ | open | GND | 2V <sub>CCO</sub> | | 1.65 V to 2.7 V | V <sub>CCI</sub> | ≤ 1.0 ns/V | 15 pF | 2 kΩ | open | GND | 2V <sub>CCO</sub> | | 3.0 V to 3.6 V | V <sub>CCI</sub> | ≤ 1.0 ns/V | 15 pF | 2 kΩ | open | GND | 2V <sub>CCO</sub> | - [1] V<sub>CCI</sub> is the supply voltage associated with the data input port. - [2] dV/dt ≥ 1.0 V/ns - [3] V<sub>CCO</sub> is the supply voltage associated with the output port. ## 12. Application information ### 12.1. Unidirectional logic level-shifting application The circuit given in Fig. 8 is an example of the 74AVC1T45-Q100 being used in an unidirectional logic level-shifting application. Table 16. Description unidirectional logic level-shifting application | Pin | Name | Function | Description | |-----|--------------------|------------------|-----------------------------------------------------------| | 1 | V <sub>CC(A)</sub> | V <sub>CC1</sub> | supply voltage of system-1 (0.8 V to 3.6 V) | | 2 | GND | GND | device GND | | 3 | А | OUT | output level depends on V <sub>CC1</sub> voltage | | 4 | В | IN | input threshold value depends on V <sub>CC2</sub> voltage | | 5 | DIR | DIR | the GND (LOW level) determines B port to A port direction | | 6 | V <sub>CC(B)</sub> | V <sub>CC2</sub> | supply voltage of system-2 (0.8 V to 3.6 V) | ### 12.2. Bidirectional logic level-shifting application <u>Fig. 9</u> shows the 74AVC1T45-Q100 being used in a bidirectional logic level-shifting application. Since the device does not have an output enable pin, the system designer should take precautions to avoid bus contention between system-1 and system-2 when changing directions. <u>Table 17</u> gives a sequence that will illustrate data transmission from system-1 to system-2 and then from system-2 to system-1. Table 17. Description bidirectional logic level-shifting application $H = HIGH \text{ voltage level}; L = LOW \text{ voltage level}; Z = high-impedance OFF-state.}$ | State | DIR CTRL | I/O-1 | I/O-2 | Description | |-------|----------|--------|--------|---------------------------------------------------------------------------------------------------------------------------| | 1 | Н | output | input | system-1 data to system-2 | | 2 | Н | Z | Z | system-2 is getting ready to send data to system-1. I/O-1 and I/O-2 are disabled. The bus-line state depends on bus hold. | | 3 | L | Z | Z | DIR bit is set LOW. I/O-1 and I/O-2 still are disabled. The bus-line state depends on bus hold. | | 4 | L | input | output | system-2 data to system-1 | ### 12.3. Power-up considerations The device is designed such that no special power-up sequence is required other than GND being applied first. Table 18. Typical total supply current $(I_{CC(A)} + I_{CC(B)})$ | V <sub>CC(A)</sub> | $V_{CC(B)}$ | | | | | | | Unit | |--------------------|-------------|-------|-------|-------|-------|-------|-------|------| | | 0 V | 0.8 V | 1.2 V | 1.5 V | 1.8 V | 2.5 V | 3.3 V | | | 0 V | 0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | μA | | 0.8 V | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.7 | 2.3 | μA | | 1.2 V | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.3 | 1.4 | μA | | 1.5 V | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.9 | μA | | 1.8 V | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | μA | | 2.5 V | 0.1 | 0.7 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | μA | | 3.3 V | 0.1 | 2.3 | 1.4 | 0.9 | 0.5 | 0.1 | 0.1 | μΑ | ### 12.4. Enable times Calculate the enable times for the 74AVC1T45-Q100 using the following formulas: - t<sub>en</sub> (DIR to A) = t<sub>dis</sub> (DIR to B) + t<sub>pd</sub> (B to A) - $t_{en}$ (DIR to B) = $t_{dis}$ (DIR to A) + $t_{pd}$ (A to B) In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the 74AVC1T45-Q100 initially is transmitting from A to B, then the DIR bit is switched, the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay. ## 13. Package outline Fig. 10. Package outline SOT363 (SC-88) Fig. 11. Package outline SOT886 (XSON6) Fig. 12. Package outline SOT1202 (XSON6) ## 14. Abbreviations #### **Table 19. Abbreviations** | Acronym | Description | |---------|-----------------------------------------| | CDM | Charged Device Model | | CMOS | Complementary Metal Oxide Semiconductor | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | HBM | Human Body Model | | MM | Machine Model | | MIL | Military | ## 15. Revision history #### Table 20. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | | | | | | | |--------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|--|--|--|--|--|--| | 74AVC1T45_Q100 v.5 | 20190325 | Product data sheet | - | 74AVC1T45_Q100 v.4 | | | | | | | | Modifications: | Type number 7 | Type number 74AVC1T45GM-Q100 (SOT886/XSON6) added. | | | | | | | | | | 74AVC1T45_Q100 v.4 | 20190128 | Product data sheet | - | 74AVC1T45_Q100 v.3 | | | | | | | | Modifications: | Nexperia. • Legal texts hav | <ul> <li>The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia.</li> <li>Legal texts have been adapted to the new company name where appropriate.</li> <li>Type number 74AVC1T45GS-Q100 (SOT1202/XSON6) added</li> </ul> | | | | | | | | | | 74AVC1T45_Q100 v.3 | 20160106 | Product data sheet | - | 74AVC1T45_Q100 v.2 | | | | | | | | Modifications: | <u>Table 16</u> : Labe | ls for pins 4 and 5 corrected. | | | | | | | | | | 74AVC1T45_Q100 v.2 | 20130408 | Product data sheet | - | 74AVC1T45_Q100 v.1 | | | | | | | | Modifications: | Type number 7 | Type number 74AVC1T45GM-Q100 has been removed. | | | | | | | | | | 74AVC1T45_Q100 v.1 | 20120820 | Product data sheet | - | - | | | | | | | ## 16. Legal information #### **Data sheet status** | Document status [1][2] | Product<br>status [3] | Definition | |--------------------------------|-----------------------|---------------------------------------------------------------------------------------| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions". - The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <a href="https://www.nexperia.com">https://www.nexperia.com</a>. #### **Definitions** **Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### **Disclaimers** Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia. Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. **Suitability for use in automotive applications** — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own triple. **Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nexperia.com/profile/terms">http://www.nexperia.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. **Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. #### **Trademarks** Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. ## **Contents** | 1. | General description | 1 | |-----|-----------------------------------------------------|----| | 2. | Features and benefits | 1 | | 3. | Ordering information | 2 | | 4. | Marking | 2 | | 5. | Functional diagram | 2 | | 6. | Pinning information | 3 | | 6.1 | . Pinning | 3 | | 6.2 | Pin description | 3 | | 7. | Functional description | 3 | | 8. | Limiting values | 4 | | 9. | Recommended operating conditions | 4 | | 10. | Static characteristics | 5 | | 11. | Dynamic characteristics | 8 | | 11. | 1. Waveforms and test circuit | 11 | | 12. | Application information | 13 | | 12. | .1. Unidirectional logic level-shifting application | 13 | | 12. | .2. Bidirectional logic level-shifting application | 13 | | 12. | .3. Power-up considerations | 14 | | 12. | 4. Enable times | 14 | | 13. | Package outline | 15 | | 14. | . Abbreviations | 18 | | 15. | . Revision history | 18 | | 16. | Legal information | 19 | | | | | For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 25 March 2019 <sup>©</sup> Nexperia B.V. 2019. All rights reserved