74AHC2G126; 74AHCT2G126

Dual buffer/line driver; 3-state

Rev. 04 — 27 April 2009

Product data sheet

1. General description

The 74AHC2G126 and 74AHCT2G126 are high-speed Si-gate CMOS devices. They provide a dual non-inverting buffer/line driver with 3-state output. The 3-state output is controlled by the output enable input (nOE). A LOW at nOE causes the output to assume a high-impedance OFF-state.

The AHC device has CMOS input switching levels and supply voltage range 2 V to 5.5 V.

The AHCT device has TTL input switching levels and supply voltage range 4.5 V to 5.5 V.

2. Features

- Symmetrical output impedance
- High noise immunity
- Low power dissipation
- Balanced propagation delays
- Multiple package options
- ESD protection:
 - ◆ HBM JESD22-A114E: exceeds 2000 V
 - ◆ MM JESD22-A115-A: exceeds 200 V
 - ◆ CDM JESD22-C101C: exceeds 1000 V
- Specified from -40 °C to +125 °C

3. Ordering information

Table 1. Ordering information

Type number	Package									
	Temperature range	Name	Description	Version						
74AHC2G126DP	–40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads;	SOT505-2						
74AHCT2G126DP			body width 3 mm; lead length 0.5 mm							
74AHC2G126DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package;	SOT765-1						
74AHCT2G126DC			8 leads; body width 2.3 mm							
74AHC2G126GD	–40 °C to +125 °C	XSON8U	plastic extremely thin small outline package; no	SOT996-2						
74AHCT2G126GD			leads; 8 terminals; UTLP based; body $3 \times 2 \times 0.5$ mm							

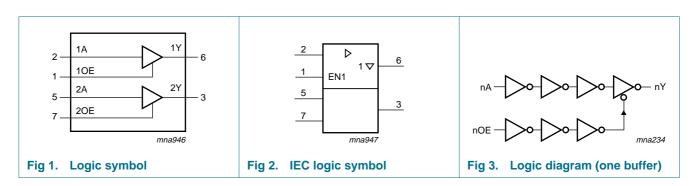
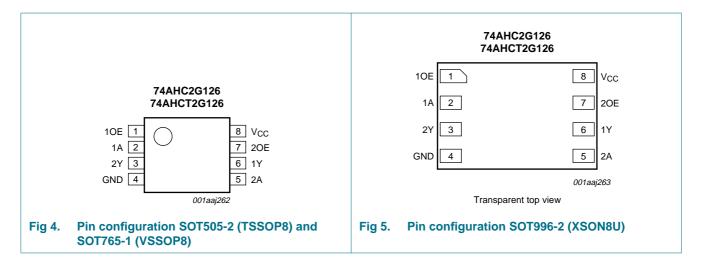

4. Marking

Table 2. Marking codes

Type number	Marking ^[1]
74AHC2G126DP	A26
74AHCT2G126DP	C26
74AHC2G126DC	A26
74AHCT2G126DC	C26
74AHC2G126GD	A26
74AHCT2G126GD	C26


^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
10E, 20E	1, 7	output enable input (active LOW)
1A, 2A	2, 5	data input
GND	4	ground (0 V)
1Y, 2Y	6, 3	data output
V_{CC}	8	supply voltage

7. Functional description

Table 4. Function table[1]

Control	Input	Output
nOE	nA	nY
Н	L	L
Н	Н	Н
L	X	Z

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	V
I_{IK}	input clamping current	$V_1 < -0.5 \text{ V}$	<u>[1]</u> –20	-	mA
I_{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$	<u>[1]</u> _	±20	mA
I _O	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I_{CC}	supply current		-	75	mA
I_{GND}	ground current		-75	-	mA
T_{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C	[2] -	250	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^[2] For TSSOP8 package: above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K. For VSSOP8 package: above 110 °C the value of P_{tot} derates linearly with 8 mW/K. For XSON8U package: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	74	AHC2G1	26	74AHCT2G126			Unit	
			Min	Тур	Max	Min	Тур	Max		
V_{CC}	supply voltage		2.0	5.0	5.5	4.5	5.0	5.5	V	
V_{I}	input voltage		0	-	5.5	0	-	5.5	V	
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V	
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C	
	input transition rise and fall rate	V_{CC} = 3.3 V \pm 0.3 V	-	-	100	-	-	-	ns/V	
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	-	-	20	-	-	20	ns/V	

10. Static characteristics

Table 7. Static characteristics

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C 1	:o +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74AHC2	G126							I		
V _{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	-	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 3.0 V	2.1	-	-	2.1	-	2.1	-	V
		V _{CC} = 5.5 V	3.85	-	-	3.85	-	3.85	-	V
V_{IL}	LOW-level	V _{CC} = 2.0 V	-	-	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 3.0 V	-	-	0.9	-	0.9	-	0.9	V
		V _{CC} = 5.5 V	-	-	1.65	-	1.65	-	1.65	V
OH	HIGH-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_{O} = -50 \mu\text{A}; V_{CC} = 2.0 \text{V}$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_O = -50 \mu\text{A}; V_{CC} = 3.0 \text{V}$	2.9	3.0	-	2.9	-	2.9	-	V
		$I_O = -50 \mu A$; $V_{CC} = 4.5 \text{ V}$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.40	-	V
		$I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.8	-	3.70	-	V
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = 50 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A; V_{CC} = 3.0 \text{ V}$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
		$I_O = 8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
l _{OZ}	OFF-state output current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	0.25	-	2.5	-	10	μΑ
I _I	input leakage current	$V_I = 5.5 \text{ V or GND};$ $V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	0.1	-	1.0	-	2.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	1.0	-	10	-	40	μΑ

Table 7. Static characteristics ...continued Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C 1	to +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
Cı	input capacitance		-	1.5	10	-	10	-	10	pF
74AHCT	2G126									
V_{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	-	-	2.0	-	2.0	-	V
V_{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	8.0	-	8.0	-	0.8	V
V_{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
		$I_{O} = -50 \mu A$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -8.0 \text{ mA}$	3.94	-	-	3.8	-	3.70	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
		Ι _Ο = 50 μΑ	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 8.0 \text{ mA}$	-	-	0.36	-	0.44	-	0.55	V
l _{OZ}	OFF-state output current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	0.25	-	2.5	-	10	μΑ
I _I	input leakage current	$V_I = 5.5 \text{ V or GND};$ $V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	0.1	-	1.0	-	2.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	1.0	-	10	-	40	μΑ
ΔI_{CC}	additional supply current	per input pin; $V_I = 3.4 \text{ V}$; other inputs at V_{CC} or GND; $I_O = 0 \text{ A}$; $V_{CC} = 5.5 \text{ V}$	-	-	1.35	-	1.5	-	1.5	mA
C _I	input capacitance		-	1.5	10	-	10	-	10	pF

11. Dynamic characteristics

Table 8. Dynamic characteristics *GND = 0 V; for test circuit see Figure 8.*

Symbol Parameter		Conditions			25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit
				Min	Тур	Max	Min	Max	Min	Max	
74AHC2G126											
	propagation delay	nA to nY; see Figure 6	<u>[1]</u>								
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]								
		$C_L = 15 pF$		-	4.7	8.0	1.0	9.5	1.0	11.5	ns
		$C_L = 50 pF$		-	6.6	11.5	1.0	13.0	1.0	14.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	[3]								
		$C_{L} = 15 pF$		-	3.4	5.5	1.0	6.5	1.0	7.0	ns
		$C_L = 50 pF$		-	4.8	7.5	1.0	8.5	1.0	9.5	ns

Table 8. Dynamic characteristics ...continued GND = 0 V; for test circuit see Figure 8.

Symbol	Parameter	Conditions			25 °C		-40 °C	to +85 °C	-40 °C t	o +125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	
en	enable time	nOE to nY; see Figure 7	<u>[1]</u>								
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]								
		C _L = 15 pF		-	5.0	8.0	1.0	9.5	1.0	11.5	ns
		$C_L = 50 pF$		-	6.9	11.5	1.0	13.0	1.0	14.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	[3]								
		$C_L = 15 pF$		-	3.6	5.1	1.0	6.0	1.0	6.5	ns
		$C_L = 50 pF$		-	4.9	7.5	1.0	9.0	1.0	9.5	ns
dis	disable time	nOE to nY; see Figure 7	<u>[1]</u>								
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]								
		$C_L = 15 pF$		-	6.0	9.7	1.0	11.5	1.0	12.5	ns
		$C_L = 50 pF$		-	8.3	13.2	1.0	15.0	1.0	16.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	<u>[3]</u>								
		$C_L = 15 pF$		-	4.1	6.8	1.0	8.0	1.0	8.5	ns
		$C_L = 50 pF$		-	5.7	8.8	1.0	10.0	1.0	11.0	ns
C _{PD}	power dissipation capacitance	per buffer; $C_L = 50 \text{ pF}$; $f_i = 1 \text{ MHz}$; $V_I = \text{GND to } V_{CC}$	<u>[4]</u>	-	10	-	-	-	-	-	pF
74AHCT	2G126										
pd	propagation	nA to nY; see Figure 6	<u>[1]</u>								
	delay	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	[3]								
		C _L = 15 pF		-	3.4	5.5	1.0	6.5	1.0	7.0	ns
		$C_L = 50 pF$		-	4.8	7.5	1.0	8.5	1.0	9.5	ns
en	enable time	nOE to nY; see Figure 7	<u>[1]</u>								
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	[3]								
		C _L = 15 pF		-	3.9	5.1	1.0	6.0	1.0	6.5	ns
		C _L = 50 pF		-	5.1	7.5	1.0	9.0	1.0	9.5	ns
dis	disable time	nOE to nY; see Figure 7	<u>[1]</u>								
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	[3]								
		C _L = 15 pF		-	4.5	6.8	1.0	8.0	1.0	8.5	ns
		C _L = 50 pF			6.1	8.8	1.0	10.0			

 Table 8.
 Dynamic characteristics ...continued

GND = 0 V; for test circuit see Figure 8.

Symbol	Parameter	Conditions	25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit		
			N	Vlin	Тур	Max	Min	Max	Min	Max	
C_{PD}		per buffer; $C_L = 50 \text{ pF}$; $f_i = 1 \text{ MHz}$; $V_I = \text{GND to V}_{CC}$	1	-	10	-	-	-	-	-	pF

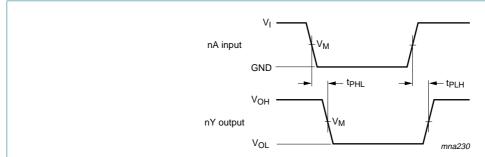
[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

 t_{en} is the same as t_{PZL} and $t_{\text{PZH}}.$

 t_{dis} is the same as t_{PLZ} and t_{PHZ} .

- [2] Typical values are measured at $V_{CC} = 3.3 \text{ V}$.
- [3] Typical values are measured at $V_{CC} = 5.0 \text{ V}$.
- [4] C_{PD} is used to determine the dynamic power dissipation P_D (μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:


 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in Volts.

12. Waveforms

Measurement points are given in Table 9.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 6. Input (nA) to output (nY) propagation delays

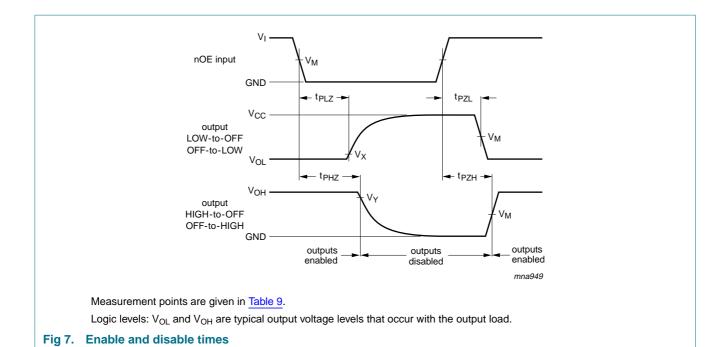
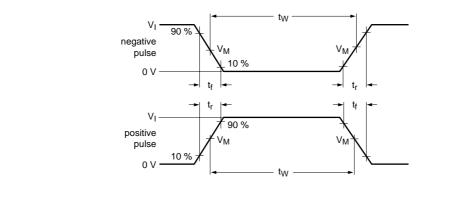
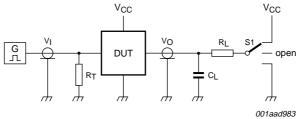




Table 9. Measurement points

Туре	Input	Output							
	V _M	V _M	V _X	V _Y					
74AHC2G126	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} – 0.3 V					
74AHCT2G126	1.5 V	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} – 0.3 V					

Test data is given in Table 10.

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

R_I = Load resistance.

S1 = Test selection switch.

Fig 8. Test circuit for measuring switching times

Table 10. Test data

Туре	Input		Load		S1 position			
	VI	t _r , t _f	CL	R _L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
74AHC2G126	V_{CC}	≤ 3 ns	15 pF, 50 pF	1 kΩ	open	GND	V_{CC}	
74AHCT2G126	3 V	≤ 3 ns	15 pF, 50 pF	1 kΩ	open	GND	V_{CC}	

13. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2

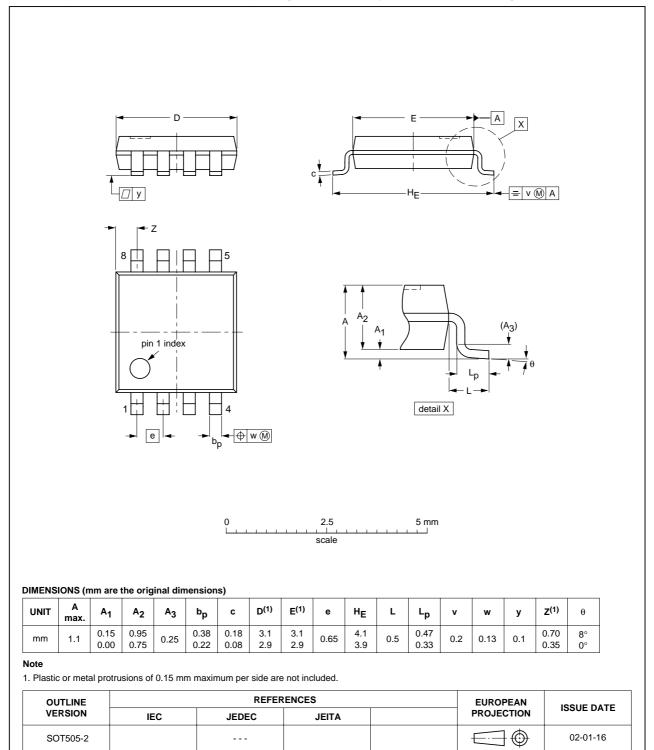
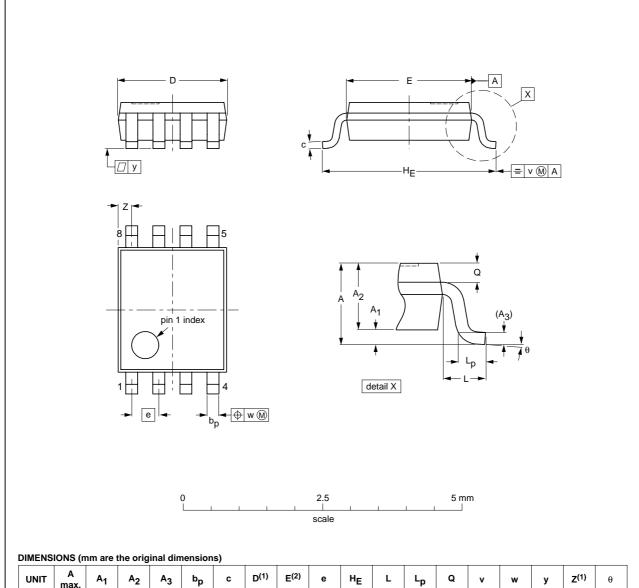



Fig 9. Package outline SOT505-2 (TSSOP8)

VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm

SOT765-1

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1	0.15 0.00	0.85 0.60	0.12	0.27 0.17	0.23 0.08	2.1 1.9	2.4 2.2	0.5	3.2 3.0	0.4	0.40 0.15	0.21 0.19	0.2	0.13	0.1	0.4 0.1	8° 0°

Notes

- Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	1330E DATE
SOT765-1		MO-187				02-06-07

Fig 10. Package outline SOT765-1 (VSSOP8)

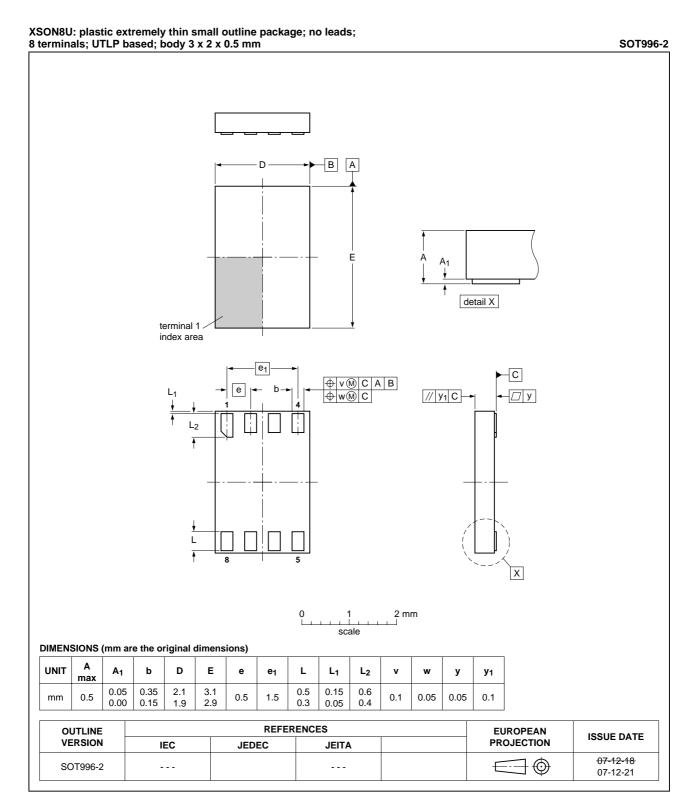


Fig 11. Package outline SOT996-2 (XSON8U)

14. Abbreviations

Table 11. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AHC_AHCT2G126_4	20090427	Product data sheet	-	74AHC_AHCT2G126_3
Modifications:	• Table 5: the t	total power dissipation value fo	or XSON8U has	been changed.
74AHC_AHCT2G126_3	20090115	Product data sheet	-	74AHC_AHCT2G126_2
74AHC_AHCT2G126_2	20040921	Product data sheet	-	74AHC_AHCT2G126_1
74AHC_AHCT2G126_1	20040113	Product specification	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74AHC2G126; 74AHCT2G126

Dual buffer/line driver; 3-state

18. Contents

1	General description
2	Features
3	Ordering information
4	Marking
5	Functional diagram
6	Pinning information
6.1 6.2	Pinning
7	Functional description
8	Limiting values
9	Recommended operating conditions
10	Static characteristics
11	Dynamic characteristics
12	Waveforms
13	Package outline
14	Abbreviations1
15	Revision history
16	Legal information14
16.1	Data sheet status
16.2	Definitions14
16.3	Disclaimers
16.4	Trademarks14
17	Contact information
12	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

