

December 2009

Single-Channel: 6N138M, 6N139M Dual-Channel: HCPL2730M, HCPL2731M (Preliminary) Low Input Current High Gain Split **Darlington Optocouplers**

Features

- Low current 0.5mA
- Superior CTR-2000%
- Superior CMR-10kV/µs
- CTR guaranteed 0–70°C
- U.L. recognized (File # E90700, Vol. 2)
- VDE recognition (pending)
 - Ordering option V, e.g., 6N138VM
- Dual Channel HCPL2730M, HCPL2731M (coming soon)

Applications

- Digital logic ground isolation
- Telephone ring detector
- EIA-RS-232C line receiver
- High common mode noise line receiver
- µP bus isolation
- Current loop receiver

Description

The 6N138M/9M and HCPL2730M/31M optocouplers consist of an AlGaAs LED optically coupled to a high gain split darlington photodetector.

The split darlington configuration separating the input photodiode and the first stage gain from the output transistor permits lower output saturation voltage and higher speed operation than possible with conventional darlington phototransistor optocoupler. In the dual channel devices, HCPL2730M/HCPL2731M, an integrated emitter-base resistor provides superior stability over temperature.

The combination of a very low input current of 0.5mA and a high current transfer ratio of 2000% makes this family particularly useful for input interface to MOS, CMOS, LSTTL and EIA RS232C, while output compatibility is ensured to CMOS as well as high fan-out TTL requirements. An internal noise shield provides exceptional common mode rejection of 10 kV/µs.

Related Resources

- www.fairchildsemi.com/products/opto/
- www.fairchildsemi.com/pf/HC/HCPL0700.html
- www.fairchildsemi.com/pf/HC/HCPL0730.html
- www.fairchildsemi.com/pf/HC/HCPL0731.html

Schematic

©2009 Fairchild Semiconductor Corporation 6N138M, 6N139M, HCPL2730M, HCPL2731M Rev. 1.0.2

Absolute Maximum Ratings (T_A = 25°C unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Value	Units
T _{STG}	Storage Temperature		-40 to +125	°C
T _{OPR}	Operating Temperature		-40 to +100	°C
T _{SOL}	Lead Solder Temperature (Wave solder only. reflow profile graph on page 13 for SMD mou	260 for 10 sec	°C	
EMITTER				
I _F (avg)	DC/Average Forward Input Current	Each Channel	20	mA
I _F (pk)	Peak Forward Input Current (50% duty cycle, 1 ms P.W.)	Each Channel	40	mA
I _F (trans)	Peak Transient Input Current – (≤1µs P.W., 30	0 pps)	1.0	А
V _R	Reverse Input Voltage	Each Channel	5	V
PD	Input Power Dissipation ⁽¹⁾	Each Channel	35	mW
DETECTO	R			
l _O (avg)	Average Output Current	Each Channel	60	mA
V _{ER}	Emitter-Base Reverse Voltage 6N138M and 6N139M		0.5	V
V _{CC} , V _O	Supply Voltage, Output Voltage	6N138M and HCPL2730M	-0.5 to 7	V
		6N139M and HCPL2731M	-0.5 to 18	
Po	Output Power Dissipation ⁽¹⁾	Each Channel	100	mW

Note:

1. No derating required for devices operated within the T_{OPR} specification (6N138 and 6N139 only). HCPL2730 and HCPL2731 derating TBD.

Electrical Characteristics

(T_A = 0 to 70°C unless otherwise specified. Typical value is measured at T_A = 25°C and V_{CC} = 5.0V.)

Individual Component Characteristics

Symbol	Parameter	Test Con	Test Conditions		Min.	Тур.	Max.	Unit	
EMITTER		I		-		1			
V _F	Input Forward Voltage		$T_A = 25^{\circ}C$	All		1.30	1.7	V	
		Each channel (I _F = 1.6	SmA)				1.75		
BV _R	Input Reverse Breakdown Voltage	T _A = 25°C, I _R = 10μA	Γ _A = 25°C, I _R = 10μA		5.0	19		V	
$\Delta V_{F} / \Delta T_{A}$	Temperature Coefficient of Forward Voltage	I _F = 1.6mA		All		-1.94		mV/°C	
DETECTO	R								
÷	Logic HIGH Output Cur-	$I_{F} = 0mA, V_{O} = V_{CC} = 18V$		6N139M		0.0036 10	100	μA	
	rent	rent		Each Channel	HCPL2731M				
		$I_F = 0mA, V_O = V_{CC} =$	7V	6N138M		0.001	250		
			Each Channel	HCPL2730M					
I _{CCL}	Logic LOW supply	I _F = 1.6mA, V _O = Ope	n, V _{CC} = 18V	6N138M, 6N139M		0.4	1.5	mA	
		$I_{F1} = I_{F2} = 1.6mA,$	$V_{\rm CC} = 18V$	HCPL2731M			3		
		$V_{O1} = V_{O2} = Open$	$V_{CC} = 7V$	HCPL2730M					
ICCH	Logic HIGH Supply	I _F = 0mA, V _O = Open,	V _{CC} = 18V	6N138M, 6N139M		0.0003	10	μA	
		$I_{F1} = I_{F2} = 0mA,$	$V_{\rm CC} = 18V$	HCPL2731M			20		
		$V_{O1} = V_{O2} = Open$	$V_{CC} = 7V$	HCPL2730M	1				

Transfer Characteristics

Symbol	Parameter	Test Condition	ons	Device	Min.	Тур.	Max.	Unit
COUPLE	D			ļ				
	Current Transfer	I _F = 0.5mA, V _O = 0.4 V, V	_{CC} = 4.5V	6N139M	400	2000		%
	Ratio ⁽²⁾⁽³⁾	Ea	ch Channel	HCPL2731M				
	I _F = 1.6mA, V _O = 0.4 V, V	_{CC} = 4.5V	6N139M	500	1600			
		Ea	ich Channel	HCPL2731M				
		I _F = 1.6mA, V _O = 0.4 V, V	_{CC} = 4.5V	6N138M	300	1600	/	
		Ea	ch Channel	HCPL2730M				
V _{OL} Logic LOW Output	I _F = 0.5mA, I _O = 2mA, V _C	_{CC} = 4.5V	6N139M		0.05	0.4	V	
	Voltage ⁽³⁾	$I_{\rm F}$ = 1.6mA, $I_{\rm O}$ = 8mA, $V_{\rm O}$	_{CC} = 4.5V	6N139M		0.093	0.4	
		Ea	ich Channel	HCPL2731M				\leq
		$I_{\rm F} = 5 {\rm mA}, I_{\rm O} = 15 {\rm mA}, V_{\rm CO}$	_C = 4.5V	6N139M		0.13	0.4	
		Ea	ich Channel	HCPL2731M				
		$I_{\rm F} = 12 {\rm mA}, I_{\rm O} = 24 {\rm mA}, V_{\rm O}$	_{CC} = 4.5V	6N139M		0.18	0.4	
	Ea	ch Channel	HCPL2731M			1		
	I _F = 1.6mA, I _O = 4.8mA, V	V _{CC} = 4.5V	6N138M		0.06	0.4		
		Ea	ch Channel	HCPL2730M			1	

Electrical Characteristics (Continued)

(T_A = 0 to 70°C unless otherwise specified. Typical value is measured at T_A = 25°C and V_{CC} = 5.0V.)

Symbol	Parameter	Test Condit	ions	Device	Min.	Тур.	Max.	Uni
t _{PHL}	Propagation Delay	$R_L = 4.7 k\Omega$, $I_F = 0.5 mA$		6N139M			30	μs
	Time to Logic LOW ⁽³⁾ (Fig. 12)		$T_A = 25^{\circ}C$			2.5	25	
		$R_L = 4.7 k\Omega, I_F = 0.5 mA$		HCPL2731M			120	
		Each Channel	$T_A = 25^{\circ}C$				100	
		$R_{L} = 270\Omega, I_{F} = 12mA$		6N139M			2	
			$T_A = 25^{\circ}C$			0.24	1	
		$R_L = 270\Omega, I_F = 12mA, E$	ach Channel	HCPL2730M			3	
			$T_A = 25^{\circ}C$	HCPL2731M			2	
		$R_{L} = 2.2k\Omega, I_{F} = 1.6mA$		6N138M			15	
			$T_A = 25^{\circ}C$			1	10	
		$R_{L} = 2.2k\Omega, I_{F} = 1.6mA, I_{F} = 1.6mA$	Each Channel	HCPL2731M			25	
			$T_A = 25^{\circ}C$	HCPL2730M			20	
t _{PLH} Propagation Delay Time to Logic	$R_{L} = 4.7 k\Omega, I_{F} = 0.5 mA$		6N139M			90	μs	
	Time to Logic		Each Channel	HCPL2731M				
	HIGH ⁽³⁾ (Fig. 12)	$R_{L} = 4.7 k\Omega, I_{F} = 0.5 mA,$	T _A = 25°C	6N139M		13.6	60	
			Each Channel	HCPL2731M	1			
		$R_{L} = 270\Omega, I_{F} = 12mA$		6N139M			10	
			$T_A = 25^{\circ}C$		1.3	7	1	
		R _L = 270Ω, I _F = 12mA, E	ach Channel	HCPL2730M			15	
			$T_A = 25^{\circ}C$	HCPL2731M			10	1
		$R_{L} = 2.2k\Omega, I_{F} = 1.6mA$		6N138M			50	
			Each Channel	HCPL2730M HCPL2731M				
		$R_L = 2.2k\Omega, I_F = 1.6mA,$	T _A = 25°C	6N138M		7.3	35	
			Each Channel	HCPL2730M HCPL2731M				
Transient		o, T _A = 25°C,	6N138M 6N139M	1,000	10,000		V/µ	
	Immunity at Logic HIGH ⁽⁴⁾ (Fig. 13)		Each Channel	HCPL2730M HCPL2731M				
ICMLI	Common Mode Transient	$(I_F = 1.6mA, V_{CM} = 10V$ $T_A = 25^{\circ}C$	$_{P-P}R_{L} = 2.2k\Omega$)	6N138M 6N139M	1,000	10,000		V/µ
	Immunity at Logic LOW ⁽⁴⁾ (Fig. 13)		Each Channel	HCPL2730M HCPL2731M				

Switching Characteristics (V_{CC} = 5V)

Electrical Characteristics (Continued)

($T_A = 0$ to 70°C unless otherwise specified. Typical value is measured at $T_A = 25$ °C and $V_{CC} = 5.0$ V.)

Isolation Characteristics

Symbol	Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Withstand Insulation Test Voltage ⁽⁵⁾	$\label{eq:rescaled} \begin{array}{l} RH \leq 50\%, T_A = 25^\circ C, I_{I\text{-}O} \leq 10 \mu A, \\ 50 Hz, t = 1 \mbox{ min.} \end{array}$	5000			V _{RMS}
R _{I-O}	Resistance (Input to Output) ⁽⁵⁾	V _{I-O} = 500VDC		10 ¹¹		Ω
C _{I-O}	Capacitance (Input to Output) ⁽⁵⁾⁽⁶⁾	f = 1MHz, V _{I-O} = 500V		1		pF
I _{I-1}	Input-Input Insulation Leakage Current ⁽⁷⁾	$\label{eq:RH} \begin{array}{l} RH \leq 45\%, V_{I\text{-}I} = 500 \text{VDC}, t = 5s, \\ HCPL2730M/2731 only \end{array}$		0.005		μA
R _{I-I}	Input-Input Resistance ⁽⁷⁾	V _{I-I} = 500VDC, HCPL2730M/2731M only		10 ¹¹		Ω
C _{I-I}	Input-Input Capacitance ⁽⁷⁾	f = 1MHz, HCPL2730M/2731M only		0.03		pF

Notes:

- 2. Current Transfer Ratio is defined as a ratio of output collector current, I_O, to the forward LED input current, I_E, times 100%.
- 3. Pin 7 open. (6N138M and 6N139M only)
- 4. Common mode transient immunity in logic HIGH level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic HIGH state (i.e., $V_O > 2.0V$). Common mode transient immunity in logic LOW level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the

common mode pulse signal, V_{CM} , to assure that the output will remain in a logic LOW state (i.e., $V_O < 0.8V$).

- 5. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 6. For dual channel devices, C_{I-O} is measured by shorting pins 1 and 2 or pins 3 and 4 together and pins 5 through 8 shorted together.
- 7. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

Electrical Characteristics (Continued) $T_A = 25^{\circ}C$ unless otherwise specified)

Current Limiting Resistor Calculations

 R_1 (Non-Invert) = $V_{DD1} - V_{DF} - V_{OL1}$ OUTPUT le. CMOS CMOS INPUT R1 (V) 74XX 74LXX 74SXX 74LSXX 74HXX $R_1 \text{ (Invert)} = V_{DD1} - V_{OH1} - V_{DF}$ @ 5V @ 10V R2 (V) $\mathsf{R}_2 = \frac{\mathsf{V}_{\mathsf{DD2}} = \mathsf{V}_{\mathsf{OLX}} \ (@ \ \mathsf{I}_\mathsf{L} - \mathsf{I}_2)}{\mathsf{I}_\mathsf{I}}$ CMOS NON-INV. 2000 1000 2200 750 1000 1000 1000 560 @ 5V INV. 510 CMOS NON-INV. 5100 @ 10V INV. 4700 Where: NON-INV. 2200 74XX V_{DD1} = Input Supply Voltage INV. V_{DD2} = Output Supply Voltage 180 V_{DF} = Diode Forward Voltage 74LXX NON-INV. 1800 V_{OL1} = Logic "0" Voltage of Driver INV. 100 V_{OH1} = Logic "1" Voltage of Driver NON-INV. 2000 74SXX I_F = Diode Forward Current INV. 360 V_{OLX} = Saturation Voltage of 74LSXX NON-INV. 2000 Output Transistor INV. 180 I_I = Load Current Through 74HXX NON-INV. 2000 **Resistor R2** I2 = Input Current of Output Gate INV. 180

v_{DD1} v_{DD2} 1 R_1 R_1 R_1 R_2 R_3 R

Fig. 2 Non-Inverting Logic Interface

Fig. 1 Resistor Values for Logic Interface

Fig. 5 LED Forward Voltage vs. Temperature

20

20

40 60 80 100

25°C

 $V_{CC} = 5V$ $V_{O} = 0.4V$

10

40°C

40 60

 $l_{r} = 1.6 \text{ mA}$

80 100

9

Package Dimensions

Through Hole

Surface Mount - 0.3" Lead Spacing (Option S)

0.022 (0.56) 0.016 (0.41) 0.016 (0.41) 0.016 (0.40) 0.008 (0.20) 0.008 (0.20) 0.000 (0.25) 0.

0.4" Lead Spacing (Option TV) (Pending)

다 다

0.390 (9.91)

SEATING PLANE

0.200 (5.08) MAX

1

0.270 (6.86)

0.070 (1.78) 0.045 (1.14) 0.020 (0.51) MIN

0.154 (3.90) 0.120 (3.05) 0.156 (3.94)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Ordering Information

Option	Example Part Number	Description
No Suffix	6N138M	Standard Through Hole Device, 50 pcs per tube
S	6N138SM	Surface Mount Lead Bend
SD	6N138SDM	Surface Mount; Tape and reel
V	6N138VM	IEC60747-5-2 approval pending (VDE)
TV	6N138TVM	IEC60747-5-2 approval pending (VDE); 0.4" lead spacing
SV	6N138SVM	IEC60747-5-2 approval pending (VDE); surface mount
SDV	6N138SDVM	IEC60747-5-2 approval pending (VDE); surface mount; tape and reel

Marking Information

Definiti	Definitions						
1	Fairchild logo						
2	Device number						
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table) (pending approval)						
4	Two digit year code, e.g., '07'						
5	Two digit work week ranging from '01' to '53'						
6	Assembly package code						

Note:

'HCPL' devices are marked only with the numerical characters (for example, HCPL2730 is marked as '2730').

The 'M' suffix on the part number is an order identifier only. It is used to identify orders for the white package version. The 'M' does not appear on the device's top mark.

Symbol	Description	Dimension in mm
W	Tape Width	16.0 ± 0.3
t	Tape Thickness	0.30 ± 0.05
Po	Sprocket Hole Pitch	4.0 ± 0.1
D ₀	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	7.5 ± 0.1
P ₂	-	2.0 ± 0.1
Р	Pocket Pitch	12.0 ± 0.1
A ₀	Pocket Dimensions	10.30 ±0.20
B ₀	_	10.30 ±0.20
K ₀		4.90 ±0.20
W ₁	Cover Tape Width	13.2 ± 0.2
d	Cover Tape Thickness	0.1 max
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

Profile Freature	Pb-Free Assembly Profile		
Temperature Min. (Tsmin)	150°C		
Temperature Max. (Tsmax)	200°C		
Time (t _S) from (Tsmin to Tsmax)	60–120 seconds		
Ramp-up Rate (t _L to t _P)	3°C/second max.		
Liquidous Temperature (T _L)	217°C		
Time (t_L) Maintained Above (T_L)	60–150 seconds		
Peak Body Package Temperature	260°C +0°C / –5°C		
Time (t _P) within 5°C of 260°C	30 seconds		
Ramp-down Rate $(T_P \text{ to } T_L)$	6°C/second max.		
Time 25°C to Peak Temperature	8 minutes max.		

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE LINDER ITS PATENT RIGHTS NOR THE RIGHTS OF OTHERS THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

14

6N138M, 6N139M, HCPL2730M, HCPL2731M — Low Input Current High Gain Split Darlington Optocouplers