

### TIGER ELECTRONIC CO.,LTD

Silicon N Channel Junction FET



### 2SK30ATM

Low Noise Pre-Amplifier, Tone Control Amplifier and DC-AC High Input Impedance Amplifier Circuit Applications

• High breakdown voltage:  $V_{GDS} = -50 \text{ V}$ 

• High input impedance:  $I_{GSS} = -1 \text{ nA (max) (V}_{GS} = -30 \text{ V)}$ 

• Low noise: NF = 0.5dB (typ.)

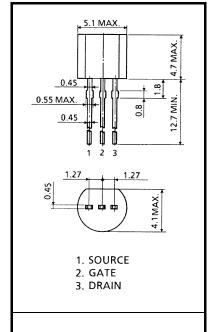
 $(V_{DS} = 15 \text{ V}, V_{GS} = 0, R_{G} = 100 \text{ k}\Omega, f = 120 \text{ Hz})$ 

#### **Absolute Maximum Ratings (Ta = 25°C)**

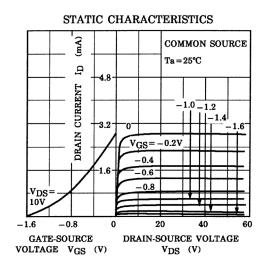
| Characteristics           | Symbol           | Rating  | Unit |
|---------------------------|------------------|---------|------|
| Gate-drain voltage        | $V_{GDS}$        | -50     | V    |
| Gate current              | IG               | 10      | mA   |
| Drain power dissipation   | $P_{D}$          | 100     | mW   |
| Junction temperature      | Tj               | 125     | °C   |
| Storage temperature range | T <sub>stg</sub> | -55~125 | °C   |

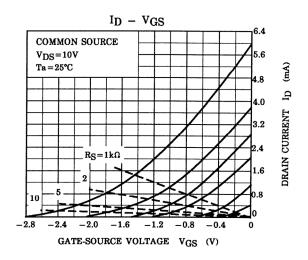
Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

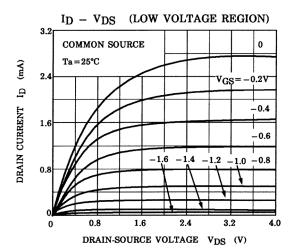
Please design the appropriate reliability upon reviewing the

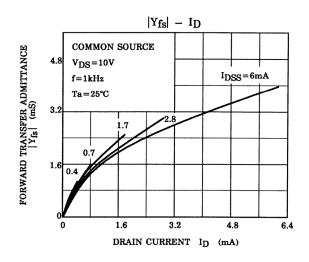

Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

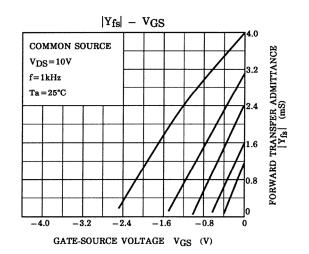
#### **Electrical Characteristics (Ta = 25°C)**

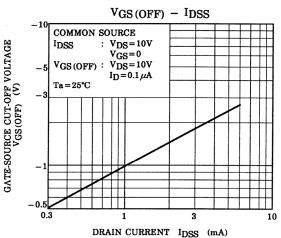

| Characteristics              | Symbol                     | Test Condition                                                                         | Min  | Тур. | Max  | Unit |
|------------------------------|----------------------------|----------------------------------------------------------------------------------------|------|------|------|------|
| Gate cut-off current         | I <sub>GSS</sub>           | $V_{GS} = -30 \text{ V}, V_{DS} = 0$                                                   |      | _    | -1.0 | nA   |
| Gate-drain breakdown voltage | V <sub>(BR) GDS</sub>      | $V_{DS} = 0$ , $I_G = -100 \mu A$                                                      | -50  | _    | _    | ٧    |
| Drain current                | I <sub>DSS</sub><br>(Note) | V <sub>DS</sub> = 10 V, V <sub>GS</sub> = 0                                            | 0.3  |      | 6.5  | mA   |
| Gate-source cut-off voltage  | V <sub>GS</sub> (OFF)      | $V_{DS} = 10 \text{ V}, I_D = 0.1 \mu A$                                               | -0.4 |      | -5.0 | >    |
| Forward transfer admittance  | Y <sub>fs</sub>            | $V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1 \text{ kHz}$                                 | 1.2  |      |      | mS   |
| Input capacitance            | C <sub>iss</sub>           | $V_{GS} = 0$ , $V_{DS} = 0$ , $f = 1$ MHz                                              |      | 8.2  |      | pF   |
| Reverse transfer capacitance | C <sub>rss</sub>           | $V_{GD} = -10 \text{ V}, V_{DS} = 0, f = 1 \text{ MHz}$                                |      | 2.6  |      | pF   |
| Noise figure                 | NF                         | $V_{DS} = 15 \text{ V}, V_{GS} = 0$<br>$R_G = 100 \text{ k}\Omega, f = 120 \text{ Hz}$ | _    | 0.5  | 5.0  | dB   |


Note: I<sub>DSS</sub> classification R: 0.30~0.75, O: 0.60~1.40, Y: 1.20~3.00, GR: 2.60~6.50



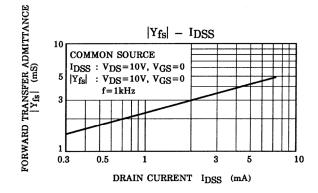



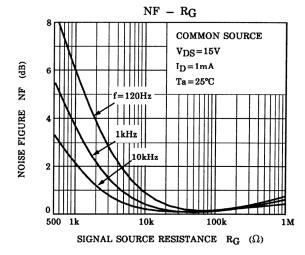


## TIGER ELECTRONIC CO.,LTD

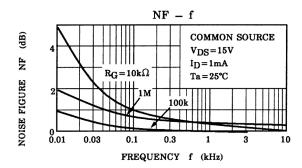


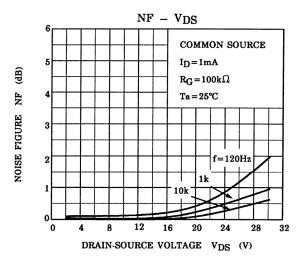


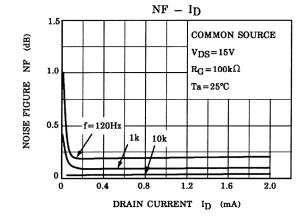




# **TIGER ELECTRONIC CO.,LTD**

